Exercise 19

In Exercises 17-24, find the unknown if the solution of each equation is given:

$$
\text { If } u(x)=\sin x \text { is a solution of } u(x)=f(x)+\sin x-\int_{0}^{\frac{\pi}{2}} x u(t) d t, \text { find } f(x)
$$

Solution

Substitute the solution into both sides of the equation.

$$
\sin x=f(x)+\sin x-\int_{0}^{\frac{\pi}{2}} x \sin t d t
$$

Subtract $\sin x$ from both sides and bring x in front of the integral.

$$
\begin{aligned}
0 & =f(x)-x \int_{0}^{\frac{\pi}{2}} \sin t d t \\
& =f(x)-\left.x(-\cos t)\right|_{0} ^{\frac{\pi}{2}} \\
& =f(x)-x(0+1) \\
& =f(x)-x
\end{aligned}
$$

Therefore,

$$
f(x)=x
$$

