Exercise 19

In Exercises 17–24, find the unknown if the solution of each equation is given:

If
$$u(x) = \sin x$$
 is a solution of $u(x) = f(x) + \sin x - \int_0^{\frac{\pi}{2}} xu(t) dt$, find $f(x)$

Solution

Substitute the solution into both sides of the equation.

$$\sin x = f(x) + \sin x - \int_0^{\frac{\pi}{2}} x \sin t \, dt$$

Subtract $\sin x$ from both sides and bring x in front of the integral.

$$0 = f(x) - x \int_0^{\frac{\pi}{2}} \sin t \, dt$$

= $f(x) - x(-\cos t) \Big|_0^{\frac{\pi}{2}}$
= $f(x) - x(0+1)$
= $f(x) - x$

Therefore,

$$f(x) = x$$